Effect of glutamine on enzymes of nitrogen metabolism in Bacillus subtilis.

نویسندگان

  • K L Deshpande
  • J R Katze
  • J F Kane
چکیده

An earlier study of the regulation of glutamate synthase (GOGAT) in Bacillus subtilis (Deshpande et al., Bichem. Biophys. Res. Commun. 95:55--60, 1980) revealed an inverse relationship between the specific activity of this essential ammonia-assimilatory enzyme and the intracellular pool of glutamine: GOGAT activity decreased when the internal glutamine concentration reached or exceeded 2.5 mM. This finding prompted the present investigation of the intracellular events linking glutamine formation to the regulation of GOGAT. A growing culture of B. subtilis was shifted from glutamate plus NH+4 medium (high GOGAT activity) to glutamate medium (low GOGAT activity). At various times after the shift, the intracellular concentrations of aspartate, glutamate, glutamine, alanine, and NH+4 and the activities of GOGAT and glutamine synthetase (GS) were measured. After 30 min, the only significant pool level change was an eightfold increase in glutamine, which paralleled a 2- to 3-fold increase in GS activity. Approximately 15 min after the glutamine pool reached its peak, GOGAT activity began to decrease and eventually declined 2.5-fold. In contrast, when B. subtilis was shifted from glutamate medium to glutamate plus NH+4 medium, there was a 1- to 2-h lag before the glutamine pool and GS activity approached a steady state. As a result, GOGAT activity was low until the concentration of glutamine dropped below 2.5 mM. We propose that glutamine is an important regulatory element in the control of GOGAT activity and that one form of GOGAT regulation involves enzyme inactivation. In addition, these results indicate that glutamine is neither a corepressor nor a feedback inhibitor of GS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression.

Synthesis of glutamate, the cell's major donor of nitrogen groups and principal anion, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis, the gltAB operon, encoding glutamate synthase, requires a specific positive regulator, GltC, for its expression. In addition, the gltAB operon was shown to be repressed by TnrA, a regulator of several other genes of nitrogen metabo...

متن کامل

Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria.

Previous studies showed that Salmonella typhimurium apparently senses external nitrogen limitation as a decrease in the concentration of the internal glutamine pool. To determine whether the inverse relationship observed between doubling time and the glutamine pool size in enteric bacteria was also seen in phylogenetically distant organisms, we studied this correlation in Bacillus subtilis, a g...

متن کامل

Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA

Bacillus subtilis TnrA, a global regulator of transcription, responds to nitrogen availability, but the specific signal to which it responds has been elusive. Genetic studies indicate that glutamine synthetase is required for the regulation of TnrA activity in vivo. We report here that the feedback-inhibited form of glutamine synthetase directly interacts with TnrA and blocks the DNA binding ac...

متن کامل

Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and L-glutamine.

Glutamine synthetase purified to apparent homogeneity from Bacillus subtilis is subject to feedback inhibition by multiple end products of glutamine metabolism, as well as by the reaction product L-glutamine. AMP, glutamine, and histidine are potent inhibitors when any of the substrates glutamate, MnATP, or ammonia are present in limiting concentration during assay, but the strong inhibition by...

متن کامل

Functional roles of the conserved Glu304 loop of Bacillus subtilis glutamine synthetase.

The enzymatic activity of Bacillus subtilis glutamine synthetase (GS), which catalyzes the synthesis of glutamine from ammonium and glutamate, is regulated by glutamine feedback inhibition. The feedback-inhibited form of B. subtilis GS regulates the DNA-binding activities of the TnrA and GlnR nitrogen transcriptional factors. Bacterial GS proteins contain a flexible seven-residue loop, the Glu3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 145 2  شماره 

صفحات  -

تاریخ انتشار 1981